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ABSTRACT
Given a collection of geo-distributed points, we aim to detect statis-

tically significant clusters of varying shapes and densities. Spatial

clustering has been widely used many important societal applica-

tions, including public health and safety, transportation, environ-

ment, etc. The problem is challenging because many application

domains have low-tolerance to false positives (e.g., falsely claiming

a crime cluster in a community can have serious negative impacts

on the residents) and clusters often have irregular shapes. In related

work, the spatial scan statistic is a popular technique that can detect

significant clusters but it requires clusters to have certain prede-

fined shapes (e.g., circles, rings). In contrast, density-based methods

(e.g., DBSCAN) can find clusters of arbitrary shape efficiently but

do not consider statistical significance, making them susceptible to

spurious patterns. To address these limitations, we first propose a

modeling of statistical significance in DBSCAN based clustering.

Then, we propose a baseline Monte Carlo method to estimate the

significance of clusters and a Dual-Convergence algorithm to ac-

celerate the computation. Experiment results show that significant

DBSCAN is very effective in removing chance patterns and the

Dual-Convergence algorithm can greatly reduce execution time.
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1 INTRODUCTION
Given a collection of N points in a spatial domain, we aim to detect

statistically significant clusters with varying shapes and densities.

The points are instances of certain events (e.g., disease, crime).

Detection of significant spatial clusters has been widely applied

in important societal domains such as public health, public safety,
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transportation and environmental science. In public health, epi-

demiologists use significant clusters (a.k.a, hotspots) to monitor

and alert the public about disease outbreaks (e.g., legionnaires’ dis-

ease, leukemia) [9, 11]. The Research Surveillance Program at the

National Cancer Institute has included significant clustering (e.g.,

SaTScan) as an important methodology and tool [1]. In public safety,

police officers use clusters of crime cases to identify neighborhoods

with abnormally high crime rates or locate serial criminals [7].

In transportation, many local governments (e.g., US states) have

launched "Zero Death" initiatives to save lives from traffic-related

accidents. With significant clustering, planners can find roads with

significantly high rates of car accidents or pedestrian fatalities,

which indicate potentially unsafe driving conditions (e.g., damaged

side walks, pot holes). In forestry, forest managers use significant

clusters to locate high-risk or fragile forest regions and identify

potential forest health problems. In environmental science, signif-

icant clusters of pollution or contamination can be used to alert

administrators of unusual regional phenomenon or problems (e.g.,

well water contamination by E. coli bacteria). These are just a few

of the many applications using significant clustering.

In these societal applications, decisions often have big impacts,

making them have low-tolerance to false positives. For example,

false alarms of disease outbreaks may lead to a huge waste of limited

public resources (e.g., budgets for sanitation, medication, research)

and cause unnecessary social stress or anxiety among lots of people.

Similarly, identifying a region as a crime cluster by mistake can

greatly reduce the number of people visiting the region, lowering

property values and hurting local businesses. For this reason, signif-

icance testing is very important and used in many critical societal

applications to greatly reduce the risk of false positives.

In related work, the spatial scan statistic [9] is a widely used

method for detecting significant clusters. The major strength of

the spatial scan statistic is its inclusion of statistical significance.

The method introduced a likelihood ratio based framework for test-

ing the significance of spatial clusters and can effectively remove

cluster candidates that are likely to be chance patterns. The major

limitation of spatial scan statistic based methods is that they require

one pre-defined geometric shape (e.g., circle [9, 13], ring [7], square

[11], linear), or require a pre-defined irregular partitioning of the

spatial domain (e.g., county boundaries in a state) which are not

available for many applications. In real-world scenarios, the shapes

of clusters are affected by many factors and may change through

time, making it difficult to represent them well with pre-defined

shapes or partitioning. In addition, the modeling of likelihood ratio

in spatial scan statistics did not consider spatial nondeterminism,

making it prone to detect very small clusters with just a few points

[12, 13]. In the data mining community, DBSCAN [8] is one of the

most popular methods for cluster detection, which won the 2014
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"Test of Time" Award from ACM SIGKDD. DBSCAN and its varia-

tions (e.g., OPTICS [4], H-DBSCAN [6]) are well-known for their

ability to detect clusters of varying geometric shape in the presence

of noise. It does not require any user input on cluster shapes and

can automatically capture them from the data. One major limitation

of DBSCAN is that it does not consider the statistical significance

of detected clusters [10], leaving space for spurious and chance

patterns in the output. While DBSCAN has a default modeling of

noise, the type of noise it considers is hard-thresholded and can

only handle simple un-clustered points at the per-point level. In

a complete random point distribution (i.e., no clustered regions),

points that appear near each other just by chance may be treated

as valid detections in DBSCAN. This issue was also realized by the

creators of the original DBSCAN and OPTICS [6]: "small clusters

of objects that may be highly similar to each other just by chance".

However, there is still no general modeling of statistical significance

for DBSCAN to resolve this problem. A remedy used by some users

is to use a threshold of minimum cluster size (e.g., 5 points as de-

faulted in [2] and many others). While this is an encouraging start,

we will show that the absolute definition or value of "small" cannot

accurately or appropriately reflect the statistical randomness or

significance in the DBSCAN setup (Sec. 2.2).

To address these limitations, we aim to join the strengths of

statistics and computer science to improve the flexibility and ro-

bustness of spatial clustering. Our contributions are: (1) we explore,

propose and compare several modelings of statistical significance

in DBSCAN; (2) we focus on a specific modeling and propose a

baseline Monte Carlo method to compute the statistical signifi-

cance; (3) we propose a Dual-Convergence algorithm to improve

the computational efficiency of significance testing; and (4) based

on the proposed significant DBSCAN (sig-DBSCAN), we present a

heuristic search method to describe the detection of clusters with

varying densities in the context of significance testing.

Experiments show that the proposed sig-DBSCAN can effectively

eliminate spurious patterns with significance testing and the Dual-

Convergence algorithm can greatly reduce the computational cost.

2 PROBLEM DEFINITION
2.1 Key Concepts
Point distribution: A collection of N geo-distributed points of

certain events (e.g., disease) in a spatial domain.

Point Process: A statistical process that governs the generation

of a point distribution. It determines the probability of having a

point at each location within the spatial domain. A homogeneous

point process (e.g., complete spatial randomness) has identical prob-

ability across all locations (i.e., no true cluster). In contrast, a bi-

ased/clustered point process has higher probabilities for locations

inside the clustered regions and lower outside. Point process is used

to define the null and alternative hypotheses in significance testing.

DBSCAN: Density-Based Spatial Clustering of Applications

with Noise [8]. It takes two inputs: (1) search radius ϵ , and (2)

minimum number of points minPts . With (ϵ,minPts ), DBSCAN
classifies a point as a core point if its ϵ neighborhood contains

at leastminPts points. In short, once a core point c is found, DB-
SCAN initializes a cluster point set P (ϵ ) of all points with its ϵ
neighborhood. For any point c ′ ∈ P (ϵ ) that is also a core point, it

expands P (ϵ ) by adding all points (without duplication) in the ϵ
neighborhood of c ′ to P (ϵ ). The expansion continues until there is

no unexpanded core point left in P (ϵ ), including any newly added

ones in the process. All the points in P (ϵ ) form a single cluster.

Then DBSCAN continues to find another cluster if it exists. Finally,

all points that do not belong to any P (ϵ ) are labeled as noise.

Test statistic: A random variable used to summarize the sample

data (e.g., a cluster in a point distribution) and test the hypotheses. In

this context, it can be considered as a score calculated from the data

(e.g., density of a cluster in a point distribution). The significance

of the score determines whether to reject the null hypothesis.

2.2 Modeling of Statistical Significance
We explore and compare several different modelings of statistical

significance for DBSCAN clustering. To be specific, the significance

of DBSCAN we are modeling here is in the context of a single

(ϵ,minPts ) combination given by a user. The use of this modeling

in the context of varying (ϵ,minPts ) will be discussed in Sec. 3.3.

The null hypothesis states that a cluster is generated by a ho-

mogeneous point process. In contrast, the alternative hypothesis

states that it is generated by a clustered/biased point process (Sec.

2.1). Note that for significant cluster detection, it is insufficient

to just check whether the entire point distribution belongs to a

homogeneous point process or not (e.g., using Ripley’s K function).

For example, in a point distribution generated by a clustered point

process, a clustering method such as DBSCAN often identifies a

mixture of significant clusters and chance patterns. As a result, just

knowing that the overall point distribution is clustered cannot help

us filter out the chance patterns. This is why the hypotheses need

to be fine-grained to cluster levels.

We explore several test statistics for the significance or hypoth-

esis testing as shown in Table 1. For a given cluster from a point

distribution, its test statistic value will be used to determine if it

can be generated by the null hypothesis.

According to Table 1, both density and likelihood ratio requires

calculation of the cluster’s area in Euclidean space. In the framework

of spatial scan statistics, cluster regions are pre-defined (e.g., all

circular regions of certain areas) so it is trivial to calculate the

areas (e.g., πr2). However, area calculation is not well-defined in

the DBSCAN framework whose output clusters are represented

by "maximal point sets". While conceptually (or visually in low-

dimension space) it is easy to sense the region covered by a point-

set cluster, mathematically it becomes tricky to model such an

area. For example, a convex hull is a popular model to depict the

region covered by a point set. However, since DBSCAN clusters can

have arbitrary shapes (e.g., concave), a convex hull modeling will

introduce large errors into the estimation. An alternative is to use

the ϵ neighborhoods of all core points in a cluster to approximate its

area. However, this requires computation of the union of all these

ϵ neighborhoods. Even for the two dimensional spatial case, just

one area calculation will take O ( |c |2 log |c |) time where |c | is the
number of core points (or ϵ neighborhoods). It will require higher

complexity and huge amount of time in higher-dimensional space.

Each test statistic involves normalization to make different clus-

ters comparable [13]. For example, density (d = n/a) uses cluster
area a as a normalization so it can be used to rank clusters with dif-

ferent areas a and number of points n, when areas are computable
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Table 1: Example candidates of test statistics for DBSCAN

Test statistic Area of cluster Normalization Bias towards small clusters Computation

Density d Required Area Yes [11, 13] Area dependent

Likelihood ratio lr Required Area + null hypothesis Yes (less) [12, 13] Area dependent

Cluster size n N/A

Search context dependent, e.g., fixed

radius [13], (ϵ,minPts ) in DBSCAN

No

O (1) for
a given cluster

Figure 1: 2000-point data by a homogeneous point process.

or available. One major disadvantage of density is its strong bias

towards small clusters. Given a cluster of density d0, there always
exists a sub-region of it that has a higher density d1. This means

that a cluster of highest density will always have the smallest area,

which is not a desired property [11, 13]. To reduce the effect, likeli-

hood ratio incorporates the null hypothesis into the normalization

and is able to reduce the bias. However, it ignores the phenome-

non of spatial nondeterminism, making it still susceptible to the

bias and leading to incorrect rankings of candidates [12, 13] (e.g., a

well-known issue is that it includes tiny patterns in its results).

Cluster size n (i.e., number of points in the cluster) is another

measure being used in scan statistics methods [13] that does not

require computation of the area. To make clusters comparable, it

does require some normalizing or constraining conditions to be

enforced into the cluster search process; otherwise a bigger set of

points is always superior. For DBSCAN, the normalizing conditions

come naturally through the required parameters (ϵ,minPts ). The
search radius ϵ and minimum number of points minPts clearly

define the conditions that valid cluster points must satisfy, so the

size of valid clusters (point sets) n are constrained by the conditions.

In the present study, our significance modeling uses cluster size

n as the test statistic because of the computational benefits (e.g.,

not requiring area computation).

In [6] (joint work by authors of DBSCAN and OPTICS), one issue

discussed is the existence of "small" clusters in the results, which

are likely to happen by chance. Here we extend this good start by

formalizing the definition of "small" using statistical significance.

Previously, to mitigate the "small" cluster issue, a remedy used by

some users is to enforce a hard-threshold on minimum cluster size

(e.g., default "5" in [2]). While intuitively small clusters (e.g., with

only 3 points) are likely to be chance patterns, chance patterns

are not necessarily small. Fig. 1 shows the results of DBSCAN

and HDBSCAN on a random point distribution generated by a

homogeneous point process. In this point distribution, all clusters

detected are chance patterns. Although the chance patterns are

indeed small in a few results (e.g., Fig. 1 (b)(c)(e)), they turn out to

be quite large (e.g., thousands of points) in others. Thus, the exact

definition of "small" has to depend on many factors, such as the

input data, the DBSCAN (or HDBSCAN) parameters, the desired

significance level and the null hypothesis.

In this paper we use significance testing to identify the exact

threshold of "small" (i.e., minimum cluster sizenmin ) under all these

factors to remove chance patterns (e.g., Fig. 1(h)).

2.3 Formal Problem Formulation
Inputs:

(1) A distribution of N geo-located points;

(2) DBSCAN parameters: (ϵ ,minPts);
(3) A test statistic;

(4) A significance level α .
Output: Significant DBSCAN clusters (if they exist).

Objectives: Solution quality and computational efficiency.

Constraints: Correctness and completeness.

This formulation shows the main scope of the paper, which is

to enable significant DBSCAN clustering. While the formulation

is defined using a single pair of (ϵ,minPts ), later in Sec. 3.3 we

will show how this formulation can be used as a sub-routine to

detect clusters of varying densities in the context of significance

testing (i.e., requiring enumeration of multiple ϵ andminPts). The
test statistic we use is the cluster size n.

The completeness and correctness require that the clusters de-

tected must satisfy the DBSCAN conditions and all cluster candi-

dates that satisfy the conditions should be enumerated. This will be

guaranteed by using exact DBSCAN as a sub-routine during signif-

icance testing. Note that while the formulation is for DBSCAN, it

can be applied generally to model significance in its variations (e.g.,

HDBSCAN with the same test statistic), assuming that the outputs

are also clustered point sets.

3 SIGNIFICANT DBSCAN CLUSTERING
In this section, we first propose a baseline Monte Carlo method to

evaluate the statistical significance of clusters detected by DBSCAN

with a single pair of (ϵ,minPts ) in Sec. 3.1. Then we propose a
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Dual-Convergence algorithm to accelerate the significance testing

in Sec. 3.2. Finally, we present a heuristic search strategy which

uses the single pair version as a sub-routine to detect significant

clusters of varying densities in Sec. 3.3.

3.1 Significance testing for a single (ϵ ,minPts)
Herewe discuss significance testing for a given pair of (ϵ,minPts ) in
DBSCAN. Denote the significance level as α (e.g., 0.01, 0.05), the size

of a detected clusterC as nC , the total number of points in the point

distribution as N , and the spatial domain of the point distribution as

S . Denote pnull (nC ,N , S, ϵ,minPts ) as the probability of having a

cluster of size nC or greater in a N -point distribution in S generated

by a homogeneous point process. pnull is also the p-value.

Definition 3.1. Cluster C is statistically significant if its p-value

pnull (nC ,N , S, ϵ,minPts ) < α .

Currently there still does not exist a known statistical model

that can calculate the probability pnull in closed-form, because

the calculation of the probability needs to consider the search and

expansion process of DBSCAN as well as the randomness associated

with distributing N points in a spatial domain S which can have

irregular shape (e.g., a sub-space of a city in Sec. 4.1.4). Thus, we

use a Monte Carlo method to estimate pnull .

3.1.1 A Baseline Algorithm with Monte Carlo Estimation. In Monte

Carlo estimation (Alg. 1), we generate M simulation trials to ap-

proximate the distribution of cluster size n (i.e., the test statistic) in

point distributions generated by a homogeneous point process.

In each trial, we first generate a random N point distribution

using homogeneous point process, and then run DBSCAN with the

same input (ϵ,minPts ) to get the best or maximum cluster size n̂ in

the trial. AfterM trials, we will haveM best n̂ values from the trials.

By sorting theM values in a descending order, we can estimate the

p-value pnull of a clusterC detected from the real data by checking

its rank r in the sorted list: pnull (nC ,N , S, ϵ,minPts ) = r/M . Note

thatM has to be at least 1/α to evaluate the significance.

We reject the null hypothesis and mark cluster C as significant

if pnull < α (or r < αM). Equivalently, we just need to find the

(αM )th largest value in the sorted list and use that as a threshold

(denoted as nα ) of cluster size to filter out non-significant clusters.

Algorithm 1:Monte Carlo estimation of nα

Require:
• total number of points N and spatial domain S
• DBSCAN parameters (ϵ,minPts )
• significance level α and number of Monte Carlo trialsM

1: assert(M ≥ 1/α )
2: nList = new List(M)

3: for i = 1 toM do
4: datar = getRandomPointDistribution(N , S)
5: clusters = DBSCAN(datar , ϵ ,minPts)
6: nList (i ) = max(clusters .getSizes())
7: end for
8: nlist = nlist .sort(’DESC’)
9: return nα = nList (ceil (α ·M ))

3.2 A Dual-Convergence Algorithm
The output of DBSCAN often contains multiple clusters with dif-

ferent sizes (i.e., number of points) and p-values. The baseline al-

gorithm finds a threshold for cluster size nα using the significance

level α to classify the detections into significant (n > nα ) and
non-significant (n ≤ nα ) groups.

Finding the exact value of nα in the baseline algorithm requires

executing the exact DBSCAN algorithm across allM trials. Our idea

is to reduce the number of exact DBSCAN runs in the Monte Carlo

trials by generating bounds on the size nmax of the largest cluster

(line 6, Alg. 1) in a simulated data (line 4, Alg. 1).

Since DBSCAN detections in real data may likely be a mix-

ture of significant and non-significant clusters, an acceleration

has to consider both cases to be truly effective. The proposed Dual-

Convergence algorithm achieves this with: (1) an upper bound of

nmax to accelerate the validation of significant clusters (Sec. 3.2.1);

(2) a lower bound of nmax and an early-termination technique

with a probabilistic performance guarantee to accelerate the fil-

tering of non-significant clusters (Sec. 3.2.1 and 3.2.2); and (3) a

dual-convergence framework which makes the above techniques

work together to maximize the speed-up (Sec. 3.2.3).

3.2.1 Upper and Lower Bounds of nmax with a Discrete Scan. To
simplify the illustration, here we first consider the case of testing

the significance of a single cluster with size nC , which is detected

from real-data. The general case will be detailed in Sec. 3.2.3.

In the baseline algorithm, in each round it finds the exact nmax .

After M trials, if the total number of trials with nmax ≥ nC is

smaller than αM (equivalently nα < nC ), then nC is significant;

otherwise, non-significant.

Here our goal is to design an efficiently-computable upper bound

UB (nmax ) and lower bound LB (nmax ) of nmax to avoid the need

of exact DBSCAN if nC > UB (nmax ) or nC ≤ LB (nmax ).
DBSCAN uses a circular ϵ-neighborhood to find core points and

merge them into clusters through range queries. Denote ALGscan
as a more general version of DBSCAN, which may use other neigh-

borhood definitions for finding core points and performing range

queries for merging. Denote n′max as the size of the largest cluster

returned by ALGscan . Lemmas 3.2 and 3.3 show the sufficient con-

ditions (not necessary conditions) for an ALGscan to make n′max
an upper or a lower bound of nmax from DBSCAN, respectively.

Lemma 3.2. n′max ≥ nmax if the neighborhoods defined in an
ALGscan (may vary from point to point) always fully contain the ϵ
neighborhoods of DBSCAN as subspaces.

Proof. The proof is straightforward. The core point set ofALGscan
must be a superset of that of DBSCAN, and any two core points

merged byDBSCAN’s range querymust also bemerged byALGscan ’s

because any ϵ-neighborhood of DBSCAN is always fully contained

by the corresponding search neighborhood from ALGscan . □

Lemma 3.3. n′max ≤ nmax if the neighborhoods defined in an
ALGscan (may vary from point to point) are always fully contained
by the ϵ-neighborhoods of DBSCAN.

Proof. The proof is symmetric to that of Lemma 3.2 by replacing

supersets by subsets. Details skipped to avoid redundancy. □
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Figure 2: Sub-grids of upper and lower bounds.

We use a discrete-scan to build and compute the upper and lower

bounds. In the discrete scan, we discretize the continuous spatial

domain S into a grid where the value of each grid cell is the number

of points inside (no need to store the actual points, just a numeric

value). The length of a grid cell is a fraction of the neighborhood

size ϵ from DBSCAN (e.g., 1/4).

Fig. 2(b) illustrates the definition of the neighborhoods in the

discrete-scan to construct the upper bounds (Lemma 3.2). Denote

G as a grid with with I rows and J columns generated from the

discretization, G (i, j ) as a cell at the ith row and the jth column

(row and column IDs start with 1), andG (i0 : i1, j0 : j1) as a sub-grid
containing all the cells with row i ∈ [i0, i1] and column j ∈ [j0, j1].
Thm. 3.4 shows the neighborhood definition in discrete-scan that

satisfies the sufficient condition for upper-bounding.

Theorem 3.4. For any point withinG (i, j ), its circular ϵ neighbor-
hood is always fully contained by the square neighborhood covered by
G (i −∆i : i +∆i ′, j −∆j : j +∆j ′), where ∆i = min(

⌈
ϵ
L

⌉
, i − 1), ∆i ′ =

min(
⌈
ϵ
L

⌉
, I − i ), ∆j = min(

⌈
ϵ
L

⌉
, j − 1), and ∆j ′ = min(

⌈
ϵ
L

⌉
, J − j ).

Proof. Every point in the original space must be contained by

a grid cell (e.g., the center cell of Fig. 2(b)(a)). Note that in order

to make sure there is strictly no overlaps between cells, each cell

only contains its top and left boundaries, except for those at the

right-most columns or bottom rows. As shown in Fig. 2(b), a point

in a cell lies at most on or infinitely next to the boundaries of a cell.

Thus, its ϵ search distance in the continuous space is at most

⌈
ϵ
L

⌉

cells in the discrete space. As a result, the circular ϵ neighborhood

must be fully contained by a sub-grid whose length is (2 ·
⌈
ϵ
L

⌉
+ 1)

cells centered at G (i, j ). The min function is used to constrain the

sub-grid to be within G. □

Similarly, Thm. 3.5 shows the neighborhood definition that sat-

isfies the sufficient condition for lower bounding.

Theorem 3.5. For any point within G (i, j ), its circular ϵ neigh-
borhood is always fully contained by the square neighborhood cov-
ered by G (i − ∆i : i + ∆i ′, j − ∆j : j + ∆j ′), where L ≤ ϵ√

2

,

∆i = min(
⌊

ϵ√
2L
− 1

⌋
, i − 1), ∆i ′ = min(

⌊
ϵ√
2L
− 1

⌋
, I − i ), ∆j =

min(
⌊

ϵ√
2L
− 1

⌋
, j − 1), and ∆j ′ = min(

⌊
ϵ√
2L
− 1

⌋
, J − j ).

Proof. Here we need to guarantee that the sub-grid neighbor-

hood is fully contained by the ϵ neighborhood of any point within

G (i, j ). In other words, the furthest distance from a point in G (i, j )
to any location within the sub-grid neighborhood must be smaller

than ϵ . As shown in Fig. 2(c), the maximum distance is achieved

between a point inG (i, j ) located at its corner and another location

at the sub-grid’s furthest corner. This distance is at most
k−1
2
·
√
2L,

where k is an odd number representing the side length (unit: cell)

of the sub-grid neighborhood. Since ( k−1
2
+ 1) ·

√
2L ≤ ϵ , we have

k to be at most

⌊√
2ϵ
L − 1

⌋
. Thus, the search distance outsideG (i, j )

is at most
k−1
2
=

⌊
ϵ√
2L
− 1

⌋
cells. □

According to Theorems 3.4 and 3.5, we can construct the upper

and lower bounds of nmax by using the grid-based neighborhoods.

Note that the only difference in the neighborhood definitions for

the upper and lower bounds lies in the values of ∆i , ∆i ′, ∆j and ∆j ′.
Other than the side-lengths of the sub-grid based neighborhoods,

the steps in the discrete-scan are exactly the same for the upper
and lower bound calculation. Thus, in the following we will use

G (i − ∆i : i + ∆i ′, j − ∆j : j + ∆j ′) in a general manner (i.e., defined

by either the upper or lower bound) to illustrate the key steps in

the discrete-scan.

In the discrete-scan, we consider all the points withinG (i, j ) as a
single super-point whose (1) location is represented by the spatial

extent of G (i, j ); (2) search neighborhood is covered by G (i − ∆i :
i + ∆i ′, j − ∆j : j + ∆j ′); and (3) cardinality is equal to the number

of original points within G (i, j ). The cardinality will be used only

when determining the core points and computing the sizes of the

clusters. Again, the core points here will be a superset of the core

points in DBSCAN.

We use super-points and grid-based neighborhoods to perform

the discrete-scan. Since super-points can be represented by grid cells

{G (i, j )}, we only need to enumerate through grid cells instead of

the actual points after the grid is constructed. Then, for eachG (i, j ),
the discrete scan uses the sub-gridG (i −∆i : i +∆i ′, j −∆j : j +∆j ′)
(Thm. 3.4 and 3.5) as the search neighborhood to determine ifG (i, j )
is a core super-point:

G (i, j ) is



core, if

∑
G (i, j )∈д |G (i, j ) | ≥ minPts

not core, otherwise

(1)

where д = G (i − ∆i : i + ∆i ′, j − ∆j : j + ∆j ′) and |G (i, j ) | is the
cardinality of the super-point.

The merging or expansion process in the discrete scan also uses

the sub-grid based neighborhoods as illustrated in Alg. 2. Note that

Alg. 2 describes the expansion for a single super-point G (i, j ), and
its output nC is the total number of points in the cluster containing

G (i, j ). In line 11 of Alg. 2, the Hadamard Product (cluster ◦G ) is
the matrix multiplication performed in element-wise fashion. As a

reminder, the value of a cell in G is the number of points in it.

After calculating the cluster sizes for all clusters, we can easily

compute the bound on nmax . Note that we need to run the discrete-

scan twice with different neighborhood definitions (i.e., Thm. 3.4

and 3.5) to compute bothUB (nmax ) and LB (nmax ). Given the size

of a cluster nC from real data, we can avoid running the exact

DBSCAN if nC > UB (nmax ) or nC ≤ LB (nmax ).

3.2.2 Early Termination with Theoretical Guarantee. Early termi-

nation has been widely used to stop Monte Carlo estimation with

M ′ < M trials. For example, if there are already (αM) trials with

nmax ≥ nC , then the cluster of size nC must not be significant and

we can directly terminate it without performing the rest trials.
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Algorithm 2: Expansion of a single G (i, j ) in a discrete-scan

Require:
• Grid G and a core super-point G (i, j )
• Helper binary grid (visited: 1, non-visited: 0) V
• DBSCAN’s minimum number of pointsminPts

1: queue = Queue().enqueue(G (i, j ))
{# Mark the cells belonging to this cluster}

2: cluster = new Grid(size=G.size; value=0)
3: while !empty(queue) do
4: core = queue .dequeue()
5: д = getGridNeighborhood(G, core)
6: coresnew = findNewCoresInNeighbor(core , д,minPts , V )

7: queue .enqueue(coresnew )

8: updateVisitedCells(V , д)
9: markClusterCells(cluster , д, newValue=1)
10: end while

{# Get cluster size.}

11: nC = computeHadamardProduct(cluster , G).sum()

12: return nC , V

In related work, early termination is mostly used as a simple

heuristic as its effectiveness is not well understood in theory.

In this work, early termination will be a key building block in the

dual-convergence process (Sec. 3.2.3) to filter out non-significant

clusters. Thus, we provide a detailed theoretical analysis of early

termination and shows the probabilistic performance estimation of

this technique for non-significant clusters.

Denote M as the number of Monte Carlo trials and α as the

significance level (M ≥ 1/α ). Denote n as the cluster size of a non-

significant cluster and p (n) as the probability of having nmax ≥ n
in a random point distribution generated by a homogeneous point

process. We first develop the following Lemma 3.6.

Lemma 3.6. For cluster size n with p (n), the probability of termi-
nating within the x trials is:

1 −

⌈αM−1⌉∑
i=0

(
x

i

)
· [p (n)i · (1 − p (n)x−i )] (2)

Proof. First, having exactly i trials with nmax ≥ n in x tri-

als follows a binomial distribution, so we have its probability as

fbin (i,x ,p (n)) =
(x
i

)
· [p (n)i · (1−p (n)x−i )]. Then, the probability

of terminating within x trials is equivalent to having at least αM
trials with nmax ≥ n in x trials. Thus, this probability follows the

cumulative binomial distribution. □

Lemma 3.6 is applied for a specific non-significant cluster size n
and requires knowingp (n). To make it useful in practice, we remove

thep (n) requirement by integrating Eq. (2) across all possible values

of p (n) and calculating the expectation:

Theorem 3.7. For a non-significant cluster, the probability of ter-
minating within the x trials is lower bounded by:

Pear ly (αM,x ) = 1 −

⌈αM−1⌉∑
i=0

(
x

i

)
·
i!(x − i )!

(x + 1)!
(3)

Proof. By integrating Eq. (2) across all p (n) we have:

Pear ly (αM,x ) =

∫
1

0

{
1 −

⌈αM−1⌉∑
i=0

(
x

i

)
· [pi · (1 − p)x−i )]

}
dp

= 1 −

⌈αM−1⌉∑
i=0

(
x

i

)
· Beta(i + 1,x − i + 1)

= 1 −

⌈αM−1⌉∑
i=0

(
x

i

)
·
i!(x − i )!

(x + 1)!

where Beta(i +1,x − i +1) is the Beta function with two inputs. □

Suppose we have α = 0.01 and M = 100. The probability of

terminating after the 2
nd

trial is 0.67, 3
rd

is 0.75 and 10
th

is 0.91.

Similarly, for α = 0.01 and M = 1, 000, then the probability of

terminating after the 20
th

trial is 0.52, 30
th

is 0.68 and 100
th

is 0.90.

This shows that early-termination can be very effective.

3.2.3 Dual Convergence towards the Significance Boundary.
To summarize, the purpose of the upper bound is to accelerate

the validation of significant clusters and the purpose of the lower

bound and early-termination is to speed-up the filtering of non-

significant ones.

Our previous discussion mainly concerned acceleration of sig-

nificance testing for a single cluster size. In a real-world scenario,

DBSCAN often returns a list of clusters with different sizes. Denote

D as a list of the sizes of detected clusters from a real dataset. D is

sorted in a descending order. There are three possible scenarios of

cluster composition in D: (1) D contains only significant clusters;

(2) D contains only non-significant clusters; and (3) D contains a

mixture of significant and non-significant clusters. The first two

scenarios are relatively easier because they can achieve acceleration

from a single technique (Sections 3.2.1 and 3.2.2).

For the third scenario, the techniques need to share information

and work together to really reduce computational cost. For exam-

ple, the upper bound avoids having to run the exact DBSCAN if

nC > UB (nmax ), where nC is the size of a detected cluster from

real data. Since we have multiple sizes in D, the condition becomes

min(D) > UB (nmax ) in order to avoid the exact DBSCAN. When

D contains non-significant clusters, this condition may be rarely

satisfied, making the upper bound ineffective. Similarly, early ter-

mination is not expected to be effective when there is at least one

significant cluster in D because this means we have to perform at

least (1 − α )M trials (e.g., 99% of the trials for α = 0.01).

To address this issue, we present a dual-convergence framework

to coordinate the techniques and make them increasingly efficient

as the trials progress.

Fig. 3 shows the progression of the trials and the information

sharing among the techniques. Here early-termination controls a

pointer et∗ on D to mark the current boundary of non-significant

clusters. Accordingly, when the upper bound operates in a trial,

it can skip the exact DBSCAN if the size at et∗ is greater than
UB (nmax ), i.e., D (et∗) > nmax instead of min(D) > nmax . As

more trials complete (e.g., 5% ofM according to the analysis in Sec.

3.2.2), et∗ will gradually cover all non-significant clusters and the
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Figure 3: Progression along trials in dual convergence.

upper bound will approach its maximal effectiveness. Note that the

upper-bounded sizes are trial-specific.

Algorithm 3 shows the execution order of the three techniques,

i.e., upper bound, lower bound and early termination.

Algorithm 3: Dual convergence

Require:
• List of cluster sizes D
• Number of Monte Carlo trialsM
• Significant level α {#Other detailed inputs are skiped}

1: et = D.length
2: Dдeq = new List(length=D.length) {# Tracking the number

of trials with nmax ≥ D (i )}
3: for t = 1 toM do
4: UB = getUB() {#upper bound}

5: if D (et ) ≤ UB then
6: unbounded_id = getMinZeroID(D > UB)
7: LB = getLB() {#lower bound}

8: if D (unbounded_id ) ≥ LB then
9: nmax = exact_DBSCAN()

10: ids = getAllNonzeroID(D ≤ nmax )

11: Dдeq (ids ) += 1

12: else
13: Dдeq (unbounded_id : end ) +=1
14: end if
15: et = getMaxNonzeroID(Dдeq < αM){#early term.}

16: if et==None, then break, end if
17: end if
18: end for
19: return Dsiд = (Dдeq < αM )

3.2.4 Time complexity. Due to the space limit, we show the time

complexity of the significant DBSCAN without detailed proofs. De-

note N as total number of points, M as number of trials, and |G |
as number of grid cells in the discrete scan. The time complexity

of the baseline algorithm is O ( fDB (N ) ×M ) = O (MN logN ) in a

2D spatial space, where fDB (N ) is the complexity of DBSCAN that

can differ by data dimensions. This paper focuses on the spatial

case. The time complexity of the Dual-Convergence algorithm is

O (ρMN logN + (1 − ρ)M · max( |G |,N )), where ρ ∈ (0, 1] is the
portion of trials that requires the exact DBSCAN. Note that in a

2D spatial case, as N increases we normally have |G | << N . The

discrete scan still requires at least linear time because we need to

count the number of points in each grid cell. This needs a single and

simple pass through the actual points (the cell a point belongs to

is trivially computable in closed-form). After that, it is just a quick

linear scan through the cells (i.e., O ( |G |) time), which no longer

involves any computation with the actual points or other special

data structures (can be used with integral image for acceleration).

In experiments (Sec. 4.2) we will see that the discrete scan works

very well (overhead is almost negligible). For non-clustered data,

we also expect the early termination to be very effective accord-

ing to the probabilistic analysis (Sec. 3.2.2) and experiment results

(Sec. 4.2). In a high-dimensional space, the overall computation is

still challenging because grid-based methods normally have time

complexity exponential to the variable dimension d (unless the

complexity treats dimension d as a constant no matter how large it

is, e.g., d = 100). Our current scope is the 2D spatial case.

3.3 Significant Clusters with Varying Densities
In this section we discuss a heuristic search strategy which uses sig-

nificant DBSCAN for a single (ϵ,minPts ) as a subroutine to detect

clusters of different densities in the context of significance testing.

Themain focus here is to illustrate the benefits of significance test-
ing and the way to perform it when considering various densities.

The scope of this discussion is not to further mature related work

in terms of detecting clusters of varying densities. Nonetheless, the

comparisons to related work are shown through experiments.

In DBSCAN, in order to detect clusters of varying densities we

need to consider a range of eps and minPts rather than a fixed

pair. A key issue that rises when we aggregate DBSCAN results

with multiple pairs of (ϵ,minPts ) is that it may greatly increase the

number of spurious detections (i.e., chance patterns from different

(ϵ,minPts )). This is where significance testing becomes more im-

portant by playing a key role in eliminating the spurious patterns.

In the following, we describe significance testing in this scenario

with an example heuristic search strategy for multi-densities.

3.3.1 An Example Heuristic Search Strategy. The search strategy

basically enumerates through a list of (ϵ,minPts ) for various densi-
ties (i.e.,minPts/(πϵ2)). Since density calculation requires both the

number of points and area, considering only a single scale (i.e., one

ϵ) for each density may not be appropriate. To mitigate this, the

search strategy additionally considers a range of ϵ for each density.

Denote U as a matrix where each row corresponds to a sin-

gle density and each column represents a specific scale (i.e., ϵ).
The value of each entry U (i, j ) is the minPts value (rounded) of

ϵ (j ) for density (i ). Lower row IDs in U represent smaller densi-

ties and lower column IDs represent smaller scales. Starting at

the highest density, the heuristic search follows two key steps in

each search-round. Step-1: It fixes the density at the current row i
and sequentially executes original DBSCAN on the same data but

through different scales from low to high. It stops at the scaleU (i, j )
when the increase in average cluster size fromU (i, j ) to U (i, j + 1)

is smaller than λ% (e.g., 10%); Step-2: It fixes the scale at the jth

column (from step-1) and sequentially executes original DBSCAN

towards lower densities. It stops at U (i ′, j ) when the average clus-

ter size from U (i ′, j ) to U (i ′ + 1, j ) is smaller than λ% (e.g., 10%).

The DBSCAN result at U (i ′, j ) is returned for this search-round

(corresponding to a density-level). This two-step process is used

to avoid inappropriate densities (e.g., too high) or scales (e.g., too

small) which may cause a single cluster to be shattered into pieces.
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Figure 4: Overall validation framework.

Using this example two-step (per round) search, we show how

significance testing should be performed in the next section.

3.3.2 Significance testing. Significance testing is performed after

each round on the returned result. To be consistent, the signifi-

cance testing uses the same (ϵ,minPts ) parameter pair used for the

returned result. Note that here we only have a single pair of param-

eters and can directly perform the significance testing described in

Sec. 3.2. In addition, the search strategy is only needed for real data

and not the significance testing (single (ϵ,minPts ) based).
After finding significant clusters, a critical step is to remove

them from the data before the next round of search. Since the next

thing we need to test is whether the rest of the data is generated

by a homogeneous point process or it contains other significant

clusters (e.g., those with lower densities), the analysis should be

independent from any already-confirmed significant clusters. Thus,

we need to remove both the points of the significant clusters and

their spatial coverage. This will result in a smaller amount of points

and a smaller spatial domain for future significance testing. The

challenge in this step is the removal of the spatial coverage of

significant clusters. Since the exact coverage of the clusters (point

sets) is not defined in DBSCAN, we rasterize the continuous spatial

domain into pixels and approximate the coverage of the clusters by

marking the pixels within the ϵ neighborhoods of the core points.
In subsequent significance testing, the points will only be randomly

distributed to the unmarked sub-spaces.

After the removal, the heuristic search continues with the next

(lower) density.

4 VALIDATION
Fig. 4 shows the overall validation framework and questions.

4.1 Comparative Analysis
The candidate methods include DBSCAN with varying parameters,

H-DBSCAN with varying parameters, SaTScan, and the proposed

significant DBSCAN with significance level set to 0.01. Note that

the significant DBSCAN used the example heuristic search strategy

described in Sec. 3.3, and any parameters associated with it remain

the same throughout the experiments for datawith different number

of points, cluster shapes, cluster densities, point processes, etc.

4.1.1 Performance on Data Generated by a Homogeneous Point
Process. Fig. 1 (2,000 points, in Sec. 2.2) shows the results of the

candidates methods on two datasets generated by a homogeneous

point process (i.e., no true clusters). The results of DBSCAN were

evaluated on three sets of parameters (ϵ,minPts ). Note that we

could have possibly used parameters corresponding to very high

densities and made sure there would be no clusters detected. How-

ever, this choice is not appropriate for two main reasons: (1) we

cannot be sure whether or not a given data is truly clustered (i.e.,

it could possibly contain real clusters) without testing so it is not

proper to assume it beforehand; and (2) the same parameters were

tried on clustered data with 2,000 and 10,000 points in the same spa-

tial domain in Sec. 4.1.2. We can see that some of these parameters

already represented a density that is too high to correctly detect

true clusters (e.g., Fig. 5(b)(d) and Fig. 6(b)(c)). Thus, the choice of

parameters already covered sufficiently high densities.

H-DBSCAN [6] is considered as an improved cluster detection

method that combines the strengths of DBSCAN and OPTICS[4]

(made by the authors of the papers). By default, H-DBSCAN does

not require input parameters and can automatically find the best

clusters based on its criteria. If needed, a minimum cluster size

can be set to refine the criteria. A common value for the minimum

cluster size is 5 (e.g., defaulted in its standard Python library [2]).

In our experiments, we tried both 5 and 40.

The results of both DBSCAN and H-DBSCAN contain spurious

patterns for different parameters. For DBSCAN, in general the

spurious patterns were smaller when the (ϵ,minPts ) corresponds
to a higher density (also affected by the scale). Some detections are

quite large in cluster size so it is difficult to remove them with a pre-

set threshold of minimum cluster size. We can see a similar trend

for H-DBSCAN results. When a larger minimum cluster size is used,

the detected spurious clusters also becomes larger, making them

difficult to remove without significance testing. This also mirrors

our earlier analysis in Sec. 2.2. In Fig. 1(g)(h) we can see that both

SaTScan and the proposed significant DBSCAN can successfully

avoid chance patterns with significance testing.

4.1.2 Performance on Data with Clusters of Varying Shapes. Fig. 5
(10,000 points) and Fig. 6 (2,000 points) show the results on two

datasets generated by biased/clustered point processes. Each has

four clusters of different shapes. As we can see, SaTScan is overall

robust against the noises with significance testing, but it is limited

in detecting clusters of general shapes. As a spatial scan statistic

approach, SaTScan operates in a top-down fashion. In other words,

it enumerates candidate regions of different sizes with a pre-defined

geometric shape and checks their statistical significance. In addition,

the enumeration space for a single shape is often already quite-large

(e.g., circles of different sizes across all locations) and results in large

computational cost. In contrast, DBSCAN operates in a bottom-up

fashion, which allows it to trace arbitrary shapes automatically

without predefined shapes. Note that it does assume the density

within a cluster is generally homogeneous without drastic changes.

As we can see, in general DBSCAN based methods show stronger

capacity than SaTScan in finding clusters with varying shapes,

although some of their results still contain many spurious patterns

due to the lack of significance testing. In addition, H-DBSCAN

methods also seem to be sensitive to the minimum cluster size

threshold. For example, in Fig. 6(f), the first three clusters were

detected as a single one. In Fig. 5(h) and Fig. 6(h), the proposed

significant DBSCAN is able to detect the significant clusters of

arbitrary shapes while successfully avoiding chance patterns.
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Figure 5: Clustered 10000-point shape data.

Figure 6: Clustered 2000-point test data.

4.1.3 Performance on Data with Clusters of Varying Densities.
The four clusters in Fig. 5 have different densities. The probability

density of having a point in the rectangle and ring is twice as high

as that in the circle and ellipse.

As we can see, DBSCAN methods can detect true clusters of

different densities by varying its parameters. However, the number

of chances patterns also greatly increases if we merge their results.

The same trend can be seen in the results of H-DBSCAN. With

significance testing, the proposed sig-DBSCAN method was able to

Figure 7: A real-world example: snow emergency tows.

filter out the chance patterns and keep only the significant clusters

of varying densities (i.e., with the heuristic search in Sec. 3.3). Again,

any parameter associated with the heuristic search remained the

same with no change throughout the experiments on different data.

4.1.4 Real-world Example: Minneapolis Snow Emergency Tows. Fig.
7 shows the results of the candidate methods on an example real-

world data of snow-emergence vehicle tows (948 points) in Min-

neapolis, US, 2019. The city is located at the north side of the US

near the Lake Superior, and receives heavy snows in the winter.

To plow the thick snow from the streets (i.e., curb to curb), a snow

emergency requires all cars parked in the declared zones to be

moved to other places; otherwise they will be tagged or towed.

Given that there are limited tow-trucks and time for towing,

towing priority (e.g., more tow trucks, higher frequency) is given

to neighborhoods that have narrower streets, which will be very

difficult to use without complete snow shoveling. According to a

transportation officer in Minneapolis (2019)[3], the neighborhoods

with the most pressing needs in the snow emergency were: Stevens
Square, the Wedge, Dinkytown and Uptown. We used this real-

world data and information to test if the methods can identify these

priority neighborhoods in the snow emergency.

Note that the invalid regions (e.g., rivers, lakes, parks, urban

forests, highway etc.) in the figure were excluded from the input

spatial domain before running these methods. The study area used

for the snow emergency data was approximated by the general cov-

erage of the points. In the experiment results, we can see that the

four neighborhoods are reasonably well captured by the significant

DBSCAN (Fig. 7(d)). The clusters that contain the neighborhoods

(sometimes together with a few adjacent ones) used the same col-

ors as the text. In the DBSCAN result (Fig. 7(b)), we can still see

these significant clusters, but there are many non-significant ones

covering most of the points. In H-DBSCAN, the clusters are more

contiguous with some being merged together but non-significant

ones still persist in most of the study area. SaTScan (Fig. 7(c)) was

able to find roughly two of the neighborhoods. It missed the one

at Uptown, potentially due to the shape of the clusters (i.e., a large

empty space towards the right-side when a circle is used to cover

it). In the other two large clusters it identified, there is not much

empty space left in the circles. In addition, SaTScan detected a very

tiny cluster near the top-left, which is also a well-known issue (i.e.,

tiny clusters tend to have a very high likelihood ratio).

4.2 Sensitivity Analysis
We evaluated the computational performance of the baseline and

the Dual-Convergence algorithms on various data sizes N , cluster-

ing degrees (or effect sizes) es and cell-sizes cs in discrete scan. For
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Figure 8: Execution time analysis.

clustered data, the clustered regions are the same as those in Fig. 5.

To add some density variations in the clustered data, the probability

density of having points (modeled by es) in the rectangle and ring

was set twice as high as that in the circle and ellipse. The default

parameter values used were N = 10, 000, es = (10, 20) and cs = ϵ/4.

4.2.1 Effect of Data Size. We evaluated the execution on varying

data sizesN on both clustered (Fig. 8(a)) and non-clustered data (Fig.

8(b)). For both data types, the general trend is that the proposed

Dual-Convergence method can greatly reduce the computational

cost and the savings becomes greater as N increases. For early-

termination, it is not very effective by itself when data is clustered

because at least (1 − α )M trials are needed. Comparing the upper-

bound and lower-bound methods, we can see that the execution

time savings are mostly achieved by the upper-bound alone while

not much more is contributed by the lower bound. The reason

might be that the lower bound is not as tight as the upper bound

with the cell size used (Fig. 2 (b) and (c)).

4.2.2 Effect of Clustering Degree. Clustering degree (or effective
size) es shows how much more likely an individual location within

a clustered region will have a point compared to a location outside.

Note that if the spatial coverage of a cluster is too small, even a

large effect size can be hard to observe and confirm due to the

small cumulative probability. We used two different es for each
clustered data: two clusters will have es0 and the other two will

have es1 = 2 · es0. The X-axis in Fig. 8(c) shows es0. Note that for
non-clustered data all the locations have the same es = 1.

The trend is that the Dual-Convergence algorithm consistently

achieved great time reduction compared to the baseline throughout

the experiment. The sharp increase of early-termination shows the

switch from non-clustered es = 1 to clustered data es > 1.

4.2.3 Effect of Cell Size in Discrete Scan. Fig. 8(d) and (e) show the

execution time under varying cell sizes cs in the discrete scan. Note

that cs we used is a fraction of ϵ . Our expectation is that a finer cs
can tighten the upper and lower bounds at the cost of increased

number of cells in the discretization. We can see that overall the

cost associated with the increase of number of cells is secondary

(i.e., very small overhead) in terms of computation. In addition,

there was a small improvement of lower bound from cs/ϵ = 1/8

to 1/16 while the improvement in the upper bound is not obvious.

The reason could be that the upper bound is much tighter than the

lower bound so it is less affected within this range of cs variation,
whereas the lower bound can benefit a lot more with a smaller cs .

5 CONCLUSIONS AND FUTUREWORK
We introduced, discussed and proposed a framework for incorporat-

ing statistical significance in DBSCAN clustering. To perform the

significance testing, we proposed a baseline Monte-Carlo method as

well as a Dual-Convergence algorithm for acceleration. In addition,

we discussed cluster detection of varying densities (i.e., multiple

(ϵ,minPts )) in the context of significance testing. Our experiment

results show that the proposed significant DBSCAN can greatly

improve solution quality by robustly eliminating chance patterns.

The Dual-Convergence algorithm also can greatly improve the

computational efficiency.

Future work: This work is just a start of improving the robust-

ness of widely-used clustering methods by modeling statistical

significance. We expect the results to encourage more studies to

explore significance testing of other methods (e.g., k-means). Also,

many other opportunities exist to further improve this work, in-

cluding different modeling strategies (e.g., advanced test statistics,

hypotheses, underlying population), different DBSCAN methods

(e.g., H-DBSCAN), higher dimensions beyond spatial, better strate-

gies for multi-density search, analysis of significance and clustering

quality (e.g., scale invariance, consistency, richness) [5], computa-

tional enhancements (e.g., distributed computing), etc.
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